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Overview / Summary

• TodayToday

– Discretization

– Brief overview of finite difference approximation, 
including rationale for its adoption, given other available 
di ti ti t h i  discretization techniques 

– Brief discussion of derivation of FDAs

– Prototype classical nonlinear field theory

• Nonlinear Klein Gordon equation

– Spherical symmetriySpherical symmetriy

– Solution using FDA



Discretization

• In numerical analysis one can often approximately solve 
continuum systems—typically differential equations—
through a process known as discretizationthrough a process known as discretization

• In the continuum case, the unknown function(s), for 
example  will typically be defined on some interval 0 t t≤ ≤example, will typically be defined on some interval 
of the real number line and will thus constitute an infinite 
number of values (the same infinity as that associated with 
the entire real number line, or any interval thereof)

max0 t t≤ ≤

the entire real number line, or any interval thereof)

• In the discrete case, the unknown function will typically be 
defined only at a finite (or at most countable  i e  having the defined only at a finite (or at most countable, i.e. having the 
infinity of the integers) number of values , 1, 2, ,n tt n n= …



Discretization (continued)

• 1st FUNDAMENTAL PURPOSE OF DISCRETIZATION  
– Reduce infinite number of “degrees of freedom” to finite g

number

• WHY?
– Computational resources are finite

• 2nd FUNDAMENTAL PURPOSE OF DISCRETIZATION
– Replace differential equations with algebraic equations

• WHY?
– Can solve algebraic equations (linear or non-linear) 

computationallyp y



Finite Difference Approximation

• Finite difference approximation (FDA) is one specific approach 
to the discretization of continuum systems such as differential 

tiequations

• We choose to focus on it here for several reasons
A ibilit  ( i   i i  f th ti l – Accessibility (requires a minimum of mathematical 
background)

– Generality (can be applied to virtually any system of 
differential equations)differential equations)

– Simplicity (relatively easy to apply in many cases)
– Sufficiency (for many problems, produces results of 

acceptable accuracy with reasonable computational cost)acceptable accuracy with reasonable computational cost)

• Other important approaches that we will not discuss
– Finite element approximation
– Spectral approximation



Finite Difference Approximation (continued) 

• BASIC IDEA

– Derivatives are replaced with algebraic “difference 
quotients”, very similar in spirit to algebraic expressions 
that are encountered in the standard definition of a 
de i ati e in calc l sderivative in calculus

0

( ) ( ) ( )( ) lim
h

df x f x h f xf x
dx h→

+ −′≡ =

– In the above

dx h

( ) ( )f h f

is a finite difference approximation of 

( ) ( )f x h f x
h

+ −

′( )fis a finite difference approximation of ′( )f x



Key Steps in Solution of Differential Systems Using FDA

1 Formulate precise and complete mathematical description 1. Formulate precise and complete mathematical description 
of the problem to solve, including
– Specification of independent variables (coordinates)

– Specification of solution domain in terms of ind. Vars.

…, ( , ), ( , ), , ,x t x t x yt

– Specification of dependent variables and their type (e.g. 
scalar or vector  real or complex )

≤ ≤ ≤ ≤ ≤ ≤ …max max0 , [ , 0 ,0 1]t t t t x

scalar or vector, real or complex …)

– Specification of differential equations governing 

( , ), (( ), ,( ) ), (, ),it x u x yu t rf x tψ …

Specification of differential equations governing 
dependent variables

– Specification of sufficient initial and/or boundary Specification of sufficient initial and/or boundary 
conditions to ensure that the problem has a unique 
solution.



Key Steps in Solution of Differential System 
Using FDA

2. Discretization: Step 1

– Define finite difference grid (mesh, lattice) that replaces Define finite difference grid (mesh, lattice) that replaces 
continuum solution domain with finite set of grid points 
at which discrete solution is to be computed

– Mesh will be characterized be a set of spacings between 
adjacent points in each of the coordinate directions; in 
this course will typically assume that these are 
constants (so meshes will be called uniform)

– Mesh spacings constitute fundamental parameters that 
control accuracy of particular FDA

– Working assumption is that in the limit that the spacings
tend to 0, the finite difference solution will converge to 
the continuum solution



Schematic of Typical Uniform Finite Difference Mesh
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Key Steps in Solution of Differential System 
Using FDA

3. Discretization: Step 2

– Replace all derivatives—including any involved in the 
initial or boundary conditions—with finite difference 
approximations

– This process yields a set of algebraic equations (linear or 
non-linear) for the discrete unknowns

4 S l ti  f l b i  ti4. Solution of algebraic equations

– The solution of the algebraic equations is then 
accomplished computationallyaccomplished computationally

– Depending on the nature of the differential equations as 
well as the FDA used the sophistication/complexity of 
the algorithms required to do this efficiently can vary g q y y
widely



Key Steps in Solution of Differential System 
Using FDA

5. Convergence testing / error analysis

– Extremely important part of solution process (difficult to 
overemphasize importance)

– Basic idea is to repeat calculations using same basic 
problem parameters, initial data, boundary conditions 
etc  but with varying mesh sizes (grid spacings)etc., but with varying mesh sizes (grid spacings)

– Investigation of behaviour of finite difference solution as 
 f ti  f h i  ll   t  ti t  ( d a function of mesh size allows us to estimate (and 

ultimately control) the accuracy of the solution, and to 
establish that the solution is converging to the desired 
continuum limitcontinuum limit



Derivation of FDAs

• Straightforward (“brute-force”) approach: Taylor series

Example: Consider derivation of FDA for second derivative • Example: Consider derivation of FDA for second derivative 
of a function, given grid function value, fj , and nearest 
neighbors , fj-1 and fj+1

"Center point" of scheme

jx 1jx +1jx −

po o

• Taylor expand about x = xj with xj+1 – xj = h

1 1 1

j 1j+j

2 3 4 5
1

1 1 1
) [ ''] [ '''']( ' [ '''] ( )

2 6 24j j j j j jj

j j

h h f h h ff f x f h f f O h

f f

− = − + + +⎡ ⎤⎣ ⎦

=

− = −

2 3 4 5
1 ( ' [ '''] (

1 1 1
) [ ''] [ ''''] )

2 6 24j j j j j jj
h hf f x f h f f O hf h h f+ = ++ = + + +⎡ +⎤⎣ ⎦



• Now look for linear combination 

c f c f fc

of the three grid function values that provides approximation 

1 0 1j j jc f c f fc− − + ++ +

of the three grid function values that provides approximation 
of 

G t  li  ti  t h d  i  

''] ''( )[ j jf f x=

h Δ• Get one linear equation at each order in h x≡ Δ

0 0(1) : c ccO − ++ + =

2 2 2

( ) : 0

1 1
( ) :

2
1

2

O h c c

O h h c ch

− +

− ++

− =

=

+

2 2



• Solving this system we find

2c c h−= =

so our desired finite difference approximation is

2
0 2

c c h

c h
− +

−= −

= =

so our desired finite difference approximation is

1 12
[ ''] j j jf
f

f f− +− +
≈

• Exercise: Show that

2
[ ]jf

h
≈

Exercise: Show that

1 1 2 4
2

2 1
[ ''] [ ''''] ( )

12
j j j

j j

f f f
f h f O h

h
− +− +

= + +

• Terminology: Since the leading order error term is quadratic 
in the mesh spacing  the approximation is said to be “second 

2 12j jh

in the mesh spacing, the approximation is said to be second 
order accurate”, or simply “second order”



Prototype Classical Field Theory
Nonlinear Klein Gordon Equation Nonlinear Klein Gordon Equation 

• Motivation

– Relatively simple time dependent PDE that is 
straightforward to solve using FDA (good model straightforward to solve using FDA (good model 
problem)

Nonlinearity appears in the form of self interaction – Nonlinearity appears in the form of self interaction 
potential

With it bl  h i  f t ti l  t i i l  i h – With suitable choice of potential, get surprisingly rich 
phenomenology



Prototype Classical Field Theory
Nonlinear Klein Gordon Equation Nonlinear Klein Gordon Equation 

• Approachpp

– Will consider following cases

1. Spherical symmetry (PDEs in 1 space + 1 time dimension)

1 Time dependent [today]1. Time dependent [today]

2. Time independent (static) — “q-balls” [tomorrow]

2. No symmetry (PDEs in 3 space + 1 time dimension 
[tomorrow or Wed.])



Nonlinear Klein Gordon Equation in Spherical 
Symmetryy y

• Nonlinear Klein Gordon (NKG) equation

dV

h                   i  l d      d  l

dV
d

μ
μφ φ

∇ ∇ =

iφ φ φ φ φwhere                  is complex and      and are real

• For concreteness, will take

1 2iφ φ φ≡ + 1φ 2φ

2 3 431 2) (| |) | | | | | |
3 4

(
2

cc
V

dV

V
c

φ φ φ φ φ≡ = + +

2
1 2 3

1 2 3

| | | |

, and adjustable parameters (consta: n s)t

dV
c c c

d
c c c

φ φ φ φ φ
φ

= + +

(will discuss motivation in subsequent lecture) 



• Specialize to spherical symmetry

– Coordinates

( )x t rμ θ ϕ≡

– Klein Gordon field

( ) ( ) ( )t r t r i t rφ φ φ φ+

( , , , )x t r θ ϕ≡

– Metric (flat)

1 2( , ) ( , ) ( , )t r t r i t rφ φ φ φ≡ ≡ +

2 2 2diag( 1, 1, , sin )g f r rμν μν θ= = −

24 2)det( sing g rμν θ= −≡



• Wave operator in spherical symmetry

( ) ( )2
2

1 1
sin

sin
gg g

rg
rμ μν μν

μ μ ν μ νφ φ θ φ
θ

∇ ∇ = ∂ − ∂ ∂ ∂
−

=

( ) ( )

( )

2 2
2 2

2

1 1
( 1) (1)

1

t t r rr r
r rφ φ

φ φ

∂ − ∂ ∂ ∂

∂

= +

• Easy to show the following (exercise)

( )2
2tt r r

r
r

φ φ= −∂ +

• Easy to show the following (exercise)

( ) ( )tt rr
r r rμ

μφ φ φ∇ ∇ = − +

which we will use in our testing of the numerical 
implementationp



• We thus have

( )2
2

1
tt r r

dV dV
r

d dr
μ

μφ φ φ
φ φ

=∇ ∇ = → − +

• Solution domain

• Will need initial conditions 

max max0 , ][ 0t t r r≤ ≤ ≤ ≤

• Will need initial conditions …

1 2(0 ) (0 ) (0 ) d (0 )
φ φ

φ φ
∂ ∂1 2

1 2(0, ), (0, ), (0, ) and (0, )r r r r
t t
φ φ

φ φ
∂ ∂



• … and boundary conditions …

– Inner: regularity conditions—r=0 is not a true boundary

S th  ( l it ) t th  i i  di t t  th t• Smoothness (regularity) at the origin dictates that
2 4

1 10 120

2 4

lim ( , ) ( ) ( ) ( )

lim ( ) ( ) ( ) ( )
r

t r t r t O r

t r t r t O r

φ φ φ

φ φ φ
→

= + +

+ +

from which it follows that

2 20 220
lim ( , ) ( ) ( ) ( )
r

t r t r t O rφ φ φ
→

= + +

1

2

( ,0) 0

( 0) 0

t
r
φ

φ

∂
=

∂
∂ 2 ( ,0) 0t

r
φ∂

=
∂



• … boundary conditions continued …

– Outer: will impose (approximate) outgoing radiation 
conditions (Sommerfeld conditions) based on the 
observation that at large distances  disturbances in a observation that at large distances, disturbances in a 
scalar field with no potential propagate as outgoing 
waves with amplitudes that fall off like 1/r

( )
( )2

1 1

2

lim ( , ) ~ ( )

lim ( , ) ~ ( )
r

t r f t r

r r

r

t r f t

φ

φ
→∞

−

−

from which we readily derive

( )2 2lim ( , ) ( )
r

r rt r f tφ
→∞

( ) ( )
( ) ( )

1 1 max( , ) ~ 0

( ) 0

t r
r t r

r t

r

r r

φ φ

φ φ

⎡ ⎤⎣ ⎦
⎤

+

⎡( ) ( )2 2 max( , ) ~ 0
t r

r tr rφ φ ⎤⎣ ⎦+⎡



• For the numerical analysis, it will prove convenient to 
rewrite the NKG equation in first-order-in-time form by rewrite the NKG equation in first order in time form by 
introducing the following auxiliary variables

1( )t r
φ∂

Π ≡1

2
2

( , )

( , )

t
t r

t
t

r
φ

Π ≡
∂
∂

Π ≡
∂

• In addition, for the purposes of maintaining regularity at 
the origin in the numerical solution, it is advantageous to 
use the following identity that follows immediately from the 
chain rule

1 ∂( ) ( ) ( )3

2 2 2
2 3

1
3 3r r rr r

r f r f r f
r r

∂
= ≡

∂



• We can then rewrite the NKG equation as the following 
system of 4 first-order-in-time PDEs

( )

1
1

2 21 1 1

t
V

φ

φ φ

∂
= Π

∂
∂Π ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ( )2 21 1 1

1 2 3 13 3
1

2
2

3 3 ( | |)| |
( ) ( )

V
r r c c c

t r rr r
φ φ

φ φ φ
φ

φ

∂Π ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − = − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠

∂
= Π

\ ( )

2

2 22 2 2
1 2 3 23 3

2

3 3 ( | |)| |
( ) ( )

t
V

r r c c c
t r rr r

φ φ
φ φ φ

φ

∂
∂Π ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂

= − = − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠

• Initial conditions (4 freely specifiable functions – will 
typically demand that initial data be smooth – i.e. ifinitely

2( ) ( )⎝ ⎠ ⎝ ⎠

differentiable): 0
1 1

0
1 1

(0, ) ( )

(0, ) ( )

r r

r r

φ φ=

Π = Π
0

2 2

0
2 2

(0, ) ( )

(0, ) ( )

r r

r r

φ φ=

Π = Π



• Boundary conditions

– Inner (regularity)

φ φ∂ ∂ ∂Π ∂Π

– Outer (outgoing radiation / Sommerfeld condition: note 

( ) ( ) ( ) ( )1 2 1 2,0 ,0 ,0 ,0 0t t t t
r r r r
φ φ∂ ∂ ∂Π ∂Π

= = = =
∂ ∂ ∂ ∂

( g g /
that these conditions are exact only for the case of no 
potential)

( ) ( ) ( ) 0r r t rφ φ∂ ∂⎡ ⎤+⎢ ⎥( ) ( ) ( )

( ) ( ) ( )

1 1 max

1 1 max

, 0

, 0

r r t r
t r

r r t r
t r

φ φ+ =⎢ ⎥∂ ∂⎣ ⎦
∂ ∂⎡ ⎤Π + Π =⎢ ⎥∂ ∂⎣ ⎦
( ) ( ) ( )

( ) ( ) ( )2 2 max, 0

t r

r r t r
t r

φ φ

⎢ ⎥∂ ∂⎣ ⎦
∂ ∂⎡ ⎤+ =⎢ ⎥∂ ∂⎣ ⎦

( ) ( ) ( )1 2 max, 0r r t r
t r
∂ ∂⎡ ⎤Π + Π =⎢ ⎥∂ ∂⎣ ⎦



• This finishes the complete mathematical specification of the 
system of PDEs that we must solve (including initial and system of PDEs that we must solve (including initial and 
boundary conditions)

• We can now proceed with the discretization of the problem • We can now proceed with the discretization of the problem 
using finite difference techniques

W  l  th  ti  d i  ith  fi it  diff  • We replace the continuum domain with a finite difference 
mesh having constant spacing in each of the two coordinate 
directions

( )max max0 , , 10 , 0,1, ,2,...,n
jr r t t r N jt Jn≤ ≤ × ≤ ≤ … =→ =

where J and N+1 are the numbers of mesh points in the 
space (r) and time (t) directions, respectively, and

constr r hr Δ1

1

const.

const.

j j

n n

r r h

t t t h

r

λ
+

+

=− ≡ Δ ≡

− = ≡ Δ ≡



• In the above,   is the so-called Courant number defined by

tΔ

λ

• For the type of finite difference scheme that we will be 
d ti  th  diti

t
r

λ Δ
≡
Δ

adopting, the condition

1λ ≤

is often required for stability (equivalently convergence), 
while the condition

is generally dictated by accuracy (assuming that the 

(1)Oλ =

g y y y ( g
truncation error orders of the temporal and spatial 
derivatives are the same)

• In practice, we will typically choose  1 / 2λ =



Crank-Nicholson Differencing

• Finite difference scheme applicable to any first order in• Finite difference scheme applicable to any first-order-in-
time PDE: originally developed for diffusion equation, but 
has proven useful for hyperbolic / wave equations, due to 
its good stability properties (numerical instability of FDAs of its good stability properties (numerical instability of FDAs of 
time dependent PDEs is a chronic problem), and the fact 
that the systems of equations that result can frequently be 
efficiently solved using a simple iterative techniquey g p q

• Consider general first-order-in-time PDE

∂

where         is some spatial differential operator

[ ]
u

L u
t

∂
=

∂

[·]L p p

• BASIC IDEA:  “Centre” FDA at fictitious grid point 

[ ]

tΔ⎛ ⎞( )1/2, ,
2

n n
j j

t
t x t x+ +

Δ⎛ ⎞= ⎜ ⎟
⎝ ⎠



1nt +
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jx

( )1/2, ,
2

n n
j j

t
t x t x+ +

Δ⎛ ⎞= ⎜ ⎟
⎝ ⎠

• Approximate time derivative using

1/2

j

1/21
2)(

nn n
j j

j

O
u u u

t
t t

++ − ∂⎛ ⎞= Δ⎜ ⎟Δ ∂⎝
+

⎠

and “average” action of         on      and[·]L 1n
ju +n

ju

( )
1

11
n n
j j h h

u u+ −
⎡ ⎤ ⎡ ⎤

where      is the FDA of the spatial operator    

( )11
2

j j h n h n
j j

u u
L u L u

t
+⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦Δ

LhL



• If     is a second order approximation, so thathL

then the overall scheme will be second order in both space 

2( )hL L O h= +

and time. 

• Note that Crank-Nicholson finite-differencing generically g g y
leads to a coupled system for the advanced time unknowns

1n
ju +

• For many hyperbolic/wave-like equations, such as the 
nonlinear Klein Gordon equation, a simple relaxation 
technique provides a robust and efficient method of solving technique provides a robust and efficient method of solving 
the system of equations


